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ABSTRACT;  In this paper, controlling of the chaos Rikitake system has been investigated. To this end, we 

used the fuzzy controller Takagi–Sugeno (T-S) method, that applies to chaotic systems. In  the first 

instance, we monitored behavior of Rikitake system, after that we designed a controller base on fuzzy T-S 

method, then applied it to the chaos Rikitake system and monitor the behavior of the system. Duration the 

paper, Numerical simulations are given to illustrate the effectiveness and validity of the proposed 

approach. 
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INTRODUCTION 
Many theories have been advanced to explain the origin of 

the earth's main dipole field, the Rikitake system introduced 

for describing the irregular polarity switching of the Earth’s 

magnetic field. But intervals among such geomagnetic 

polarity reversals are highly irregular. Thus, while their 

average is about 
5103 years, there are intervals as long as 

7103  years without polarity change. From introduce 

Rikitake system, till now many control approaches have 

been presented. At the bellow we will review this works 

together: 

Pecorra and Carroll [1], Ott.E, et.al.[2], Carlos Aguilar-

Ibañez, et.al. [3], Mohammad Ali Khan [4] Synchronization 

for chaotic system has been investigated. In the last years, 

some methods to achieve synchronization have been 

proposed from the control theory perspective, such as the 

famous observer-based approach [5], [6], and the so-called 

adaptive synchronization method [7]. Two research 

directions have been already conformed in synchronizing 

chaos: (i) analysis and (ii) synthesis. Analysis problem 

comprises: (a) the classification of synchronization 

phenomena [8], (b) the construction of a general framework 

for unifying chaotic synchronization [9], and (c) the 

comprehension of the synchronization properties, for 

instance, robustness [10] or geometry [11]. Liu Xiao-Jun, 

et.al. [12] analyzed the dynamics of Rikitake two-disk 

dynamo to explain the reversals of the Earth’s magnetic 

field. They concluded that the chaotic behavior of the system 

can be used to simulate the reversals of the geomagnetic 

field. The Rikitake chaotic attractor was studied by several 

authors. T. McMillen [13] and Mohammad Javidi et.al.[14] 

has studied the shape and dynamics of the Rikitake attractor. 

J. Llibre .et.al [15] used the Poincare compactification to 

study the dynamics of the Rikitake system at infinity. Chien- 

Chih Chen et.al [16] have studied the stochastic resonance in 

the periodically forced Rikitake dynamo. In the past decade, 

many researchers start working on controlling the chaotic 

behaviors. Harb and Harb [17] have designed a nonlinear 

controller to control the chaotic behavior in the phase-locked 

loop by means of nonlinear control. Ahmad Harb[18] have 

designed a controller to control the unstable chaotic 

oscillations by means of back stepping method. U.E. 

Vincent, R. Guo [19], Park et.al [20] and Jeong et.al[21] 

They have presented a controller by use of adaptive method 

and controlled chaotic Rikitake system. 

In this paper we want to control chaotic Rikitake system by 

use of Takagi–Sugeno (T-S) fuzzy model [22] has attracted a 

great deal of attention. The main purpose of the T-S fuzzy 

model is to represent or approximate a complex nonlinear 

system. The T-S fuzzy model approach will provide a 

powerful method for analysis of nonlinear systems [23, 24]. 

In other words fuzzy control has been proved to be a 

powerful method for the control problem of complex 

nonlinear systems. For many real life systems, which are 

highly complex and inherently nonlinear, conventional 

approaches to modeling often cannot be applied whereas the 

fuzzy approach might be the only appropriate alternative 

[28]. Takagi-Sugeno fuzzy model and the so-called parallel 

distributed compensation, a controller structure devised in 

accordance with the fuzzy model [29].We will write state 

space of Rikitake system after that write fuzzy rules T-S 

method and obtain matrix of new state space, later rewrite 

equation while will apply a control signal to the input signal 

and monitor the effect of fuzzy controller on the chaotic 

Rikitake system. 

The remaining of this work is organized as follows. In 

Section 2 we will describe mathematical of Rikitake system 

and will monitor the behavior of system in a usual situation, 

without a controller. In section 3 the modeling of the 

Rikitake system has been presented, that for more 

convenience, the equations of the system will be written in 

the state-space matrix form and on base of this form will 

continue and write fuzzy rules and calculate control signal. 

In the next section will apply control signal on chaotic 

system and while, will assume the initial conditions and will 

monitor the effect of our controller on this chaotic system. 

At the end conclusion has been presented. 

Description mathematical of Rikitake system 

The original differential equations derived by Rikitake are: 
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where L, R are the self-inductance and resistance of the 

coil, the electric currents, I,  , C, G are the electric 

currents, the angular velocity , momentum of inertia, and 

the driving force; M, N are the mutual inductance 

between the coils and the disks. 

Now we consider a further simplification by 

L1=L2, R1=R2, M =N, C1=C2, G1=G2  

and set: 
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Where, constant parameter a,u>0.  

The system mathematical model can be written as 

follows:  
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Where (x1, x2, x3) ∈ R3 are the state variables and a > 0, u 

> 0 are parameters. Note that system (4) is a quadratic 

system in R
3
. The choice of the parameters a > 0 and u > 

0 reflects a physical meaning in the Rikitake model. For 

study physical meaning can see [30]. Here we suppose 

a=5 & u=2, we know according to ref. [32] this system in 

some values is unstable and we choose this system in 

chaos mode. 

Note that x and y are corresponding to the electric 

currents, while z is corresponding to the angular velocity. 

For more details read ref. [30, 31]. 

 
Fig.1 The Rikitake dynamo is composed of two disk 

dynamos coupled to another 

 

 
Fig.2. Behavior of Rikitake system without controller, in 

t=100 seconds 

 
Fig.3. Behavior of Rikitake system in 3D plot 

Modeling of the Rikitake system 
To realize a fuzzy model-based design with parametric 

uncertainty, chaotic systems should first be represented by 

fuzzy models. For this point we, at the first rewrite 

equations of Rikitake system on base of state space after 

that obtain fuzzy model. 

For more convenience, the equations of system can be 

written in the state-space matrix form as: 
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And we suppose that Z1(t)=X3(t) and Z2(t)=X1(t) then we 

can write: 
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Now we want to calculate the values of Z1(t), Z2(t) when 

X1   [1 3] and X3  [1 3] then we will get following 

values: 
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From min and max values of Z1(t), Z2(t) we can write: 
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Fig.4. Membership functions M11, M12, M21 and M22 

From M11, M12, M21 and M22 we want to write rules of T-

S fuzzy models: 

Rule 1: If Z1(t) is M11 and Z2(t) is M21 then: 

)()()( 1 tCuBtxAtx 


 

Rule 2: If Z1(t) is M11 and Z2(t) is M22 then: 
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Rule 3: If Z1(t) is M12 and Z2(t) is M21 then: 
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Rule 4: If Z1(t) is M12 and Z2(t) is M22 then: 
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From these rules will obtain: 
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Rikitake system: 

  



4

1
)())(()(

.

i
BtxiAtzihtx

                   (6) 

And  

))(())(())((

))(())(())((

))(())(())((

))(())(())((

2221124

2211123

2221112

2211111

tzMtzMtzh

tzMtzMtzh

tzMtzMtzh

tzMtzMtzh









 

We can simplify and write the controlled system bellow: 
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Where  
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332211 ][)( Rxyxyxyte   and C is the 

constant matrix. 

We have: 
T

321 ][)( uuutu  That it is the control input, and it’s 

equals to eCu   .  

 
RESULTS AND DISCUSSION 
In this part to verify and in order to test the effectiveness 

and feasibility of the presented fuzzy control method, the 

simulation results have been performed. 

The initial conditions of the drive and response system are 

chosen to be    1,1,1,, 321 xxx  and 

   2,2,2,, 321 yyy respectively. 
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Fig.5. Behavior of Rikitake system after control, in t=100 

seconds 
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CONCLUSION 
 In this paper, we investigated chaotic Rikitake system 
and monitored the behavior of the system. We designed 
and suggested, on base of fuzzy logic T-S(Takagi–Sugeno 
fuzzy control techniques), a controller  and applied this 
fuzzy controller on chaotic system and monitored 
behavior of the system. We observed the speed and effect 
of fuzzy controller on this system, In Comparison to other 
controllers, this controller works faster and more accurate 
than other controllers. Finally, we conclude from 
numerical simulation results that fuzzy controller is more 
effective than similar controllers. 
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